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Abstract 
The design of a pump intended for use with a dual expander cycle (LOX/H2) 

engine is presented.  This arrangement offers a number of advantages over hydrogen 

expander cycles; among these are the elimination of gearboxes and inter-propellant 

purges and seals, an extended throttling range, and higher engine operating pressures and 

performance.  The target engine has been designed to meet the needs of Phase III of the 

Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program; thus, this 

pump must meet the program’s reliability, maintainability, and service life goals.  In 

addition, this pump will be driven by warm gaseous oxygen. In order to meet the needs of 

this engine, the pump will need to be capable of delivering 106 lbm/s (48.1 kg/s) at 4500 

psi (31 MPa); this will necessitate a turbine capable of supplying at least 2215 hp (1652 

kW).  The pump and turbine were designed with the aid of an industry standard design 

program; the design methodology and justification for design choices are presented.  

Appropriate materials of construction and bearings for this pump are discussed. 

 

 

 



 

CONCEPTUAL DESIGN OF AN OXYGEN PUMP FOR USE IN A DUAL- 
EXPANDER CYCLE ENGINE 

 
1 Introduction 

1.1 Motivation 

 The Integrated High-Payoff Rocket Propulsion Technology (IHPRPT) 

program was initiated in 1994 with the goal of doubling US rocket propulsion capabilities 

by 2010 (as measured against the 1993 baseline).  The goals are summarized in Table 1, 

taken from Blair and DeGeorge.1  The main goals of interest are increased payload 

(which this effort will accomplish by increasing Isp of the upper stage), cost reduction2 

and reliability improvement.  Additionally, as this program envisions the use of a 

reusable launch vehicle3, the ability to perform aircraft-like operations and thus reliability 

and maintainability is highly valued. 

The Centaur upper stage used on both EELV variants (the Delta IV and Atlas V) 

is powered by the RL-10 engine, described in detail in section 2.  The heavy variants of 

these launch systems are capable of boosting payloads of 21,890 kg to LEO and 6,280 kg 

to GEO.4  When compared to foreign counterparts, the US appears to be falling behind in 

its technological advantage.  The H-IIA, operated by the Japanese Aerospace Exploration 

Agency (JAXA), utilizes an LE-5B upper stage engine.5  This vehicle has a LEO (300 

km, circular 30○ orbit) payload capability of 10,000 kg (22,000 lb).  The Ariane 5 ESC-B 

upper stage powered by the Vinci engine has payload capacity of 12,000 kg (26,400 lb) 

to geostationary transfer orbit.6   
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Table 1: IHPRPT Goals for boost and orbit transfer1  
Boost and Orbit Transfer Propulsion Phase I Phase 

II 
Phase 
III 

Reduce Stage Failure Rate 25% 50% 75% 
Improve Mass Fraction (Solids) 15% 25% 35% 
Improve Isp (Solids)  2% 4% 8% 
Improve Isp  (sec) (Liquids) 14 21 26 
Reduce Hardware Cost 15% 25% 35% 
Reduce Support Costs 15% 25% 35% 
Improve Thrust to Weight (Liquids) 30% 60% 100% 
Mean Time Between Removal (Mission Life: Reusable) 20 40 100 

 

In support of the IHPRPT goals, a study was performed at AFIT to examine the 

design of a dual expander cycle upper stage LOX/H2 engine with an aerospike nozzle to 

accomplish IHPRPT Phase III goals.  The LOX/H2 combination was chosen because of 

its potential to achieve high Isp values relative to other liquid propellant systems such as 

LOX/RP.  Maximizing Isp in an upper stage has a greater positive effect on payload 

capacity than doing likewise in a first stage.7 This engine, shown schematically in Figure 

1, was designed with a target Isp of 464 s and a thrust goal of 50,000 lbf (222 kN).  In the 

phase III concept engine, LOX will be used to cool the chamber wall while H2 is used to 

cool the nozzle and aerospike.  Each propellant is to have its own pump and turbine 

driven by heat pickup from the respective cooling circuits.  This arrangement negates the 

need for a gearbox required for single-turbine engines such as the one employed on the 

current upper stage engine, the Pratt & Whitney RL-10.8 Avoiding the use of a gearbox 

will result in lower weight and greater operability for the dual expander concept. 

Additionally, this approach will eliminate the inter-propellant seal and purge fluid 

systems necessary in a hydrogen-only expander cycle.  The elimination of this seal 

eliminates the critical failure possibility; however, it will also require hot oxygen tolerant 
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LOX Inlet 

turbine materials.9 

 

Figure 1: Dual Expander Cycle engine schematic 

 

Further, a dual expander cycle is better suited to the high cycle life, mean time between 

removal, and throttleability targets since the heat pickup demands on the hydrogen circuit 

are less than for a comparable hydrogen expander cycle.10 The elimination of the inter-

propellant seals and purges also facilitates the reliability goal when many restarts will be 

required. In comparison to other rocket cycles, an expander cycle engine is also 

inherently safer, as it avoids the use of multiple combustion chambers.  Finally as 

mentioned by Buckmann, et al., this cycle delivers the propellants to the combustion 

chamber as superheated gases, resulting in an injector pressure drop which varies 

F
LH2 Inlet 

H2 Pump- 1st  Stage 

GO2 to Chamber

Chamber Cooling Jacket Inlet 

LH2 to Aerospike Cooling 

GO2 to Turbine 

O2 TurbineH2 Turbine 

To Chamber 

GH2 to Chamber 

GH2 to Turbine

O2 Pump

Aerospike
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approximately as mass flow instead of mass flow squared.10  This feature will help 

maintain stable chamber conditions when the engine is throttled.  

 

1.2 Problem Statement 

In order to continue to meet the nation’s space lift goals, the Air Force must 

improve its orbital transfer vehicle capabilities, which necessitates improvements in 

upper-stage engines; this need is the driving force behind the IHPRPT program.  The 

Dual Expander Aerospike Nozzle (DEAN) engine has been designed to meet the 2010 

goals set out in the Phase III IHPRPT program.1  This engine concept will require an 

oxygen pump capable of supporting the program’s reliability, maintainability, and service 

life goals while delivering the required flow at the required pressure.  Additionally, this 

pump must be powered by (and thus be resistant to) hot oxygen and have the ability to 

operate stably over a range of flow rates. 

1.3 Research Goals 

This effort details the design of an oxygen turbopump required by a dual expander 

cycle upper stage engine intended to meet the Phase III IHPRPT requirements.  The 

primary objectives of this effort are fourfold: 

1. to deliver LOX flow at the operating conditions required by this engine 

2. to include design features supporting reliability goals of the IHPRPT Phase III 

requirements 

3. to analyze throttling capability over a range of flow rates 
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4. to ensure the pump concept can support aircraft-like operations, is maintainable 

and reusable with acceptable service life.   

1.4 Research Focus 

This work focuses on the design of the impeller and turbine necessary for this 

pump.  Of most interest is the design of the components, especially the turbine rotor and 

pump impeller necessary for this pump to achieve the performance, maintainability, and 

reliability goals set out by the Phase III IHPRPT program.  Further, the components must 

be capable of supporting throttled operation, thus off-design performance will be 

important.  Finally, this work will explore the materials and bearings required for the 

pump to be successful. 
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2 Literature Review 

This chapter starts with a survey of current and planned LOX/H2 upper-stage 

engines and their LOX pumps.  It concludes with an exploration of details of design 

features critical to pump success and the attainment of the objectives set out in Chapter 1. 

2.1 Current Systems 

Due to unique advantages of LOX/H2 upper-stage engines, such as greater Isp, 

there are a number in use today.  These include the RL-10 which powers the Centaur 

upper stage on both EELV variants, the LE-5 used by the Japanese Aerospace 

Exploration Agency (JAXA), and the Vinci used by the European Space Agency (ESA).  

This section will discuss these with special attention paid to their LOX pumps, and 

conclude with an Aerojet effort which developed a LOX pump intended for an upper 

stage application. 

2.1.1 Pratt & Whitney RL10  

The RL-10 is used on the Centaur and has a long track record as a reliable engine 

having been originally developed in the 1960s, and it was the first flight engine   

to have bearings lubricated and cooled by liquid hydrogen.11,12  As shown in  

Figure 2, it relies on a hydrogen expander cycle to power the turbine and a geared 

arrangement to drive both the LOX and H2 pumps.13  The RL10-A4’s LOX pump 

delivers 17.78 kg/s (39.1 lb/s) at 5,725 kPa (830.6 psi) with a design speed of 14300 rpm.  

As noted by Brannam, et al14, the hydrogen expander cycle used by this engine is capable 

of only modest improvements over the baseline RL-10A-3-3A.  This engine’s growth 

potential is limited due to power extraction requirements from the cooling circuit.   
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The hydrogen must be heated to temperatures near the design limit for alloys currently 

used in the chamber liner.  

Other limits of this engine cycle that make it an unattractive candidate for this application 

include: 

1. While the RL-10 is designed to have restart capability, it is designed for a     

relatively short life. 

2. The RL-10 has a high parts count, a large gearbox vital to its operation, and 

requires many hours of touch labor, suggesting that it would be difficult to 

achieve the IHPRPT maintainability goal with this type of engine configuration. 

3. A single expander cycle is capable of only a limited throttling range. When 

other IHPRPT goals such as mean time between removal, the ability to have 

multiple starts, and throttleability are considered, the limitations of this cycle 

make it a less than ideal candidate for this application. 
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Figure 2:  RL-10 Schematic13 

2.1.2 LE-5B 

 The LE-5 is used on the upper stage of the Japanese H-II rocket.15  It uses 

a single expander cycle to power both LOX and H2 pumps with H2 as the drive gas for 

both turbines, and is designed to deliver 137 kN (30,800 lb) of thrust with a specific 

impulse of 448 s. Its attributes are summarized in Table 2.  Its LOX pump delivers 19.4 

kg/s (42.7 lb/s) at a design speed of 17,000 rpm.  Throttling and the ability to have 

multiple burns with long coast phases were two design priorities during the development 

of this engine. It is expensive compared to other similar engines.15  Like the Vinci engine 

(below), it requires an inter-propellant seal and purge system for the oxygen turbopump.  

8 



 

 
 

Table 2: LE-5B Performance Characteristics15 
  LE-5B LE-5A

Thrust (in Vacuum) [kN]  137 122 
Isp (in vacuum) [sec] 450 453 
Engine Mixture Ratio 5 5 
Chamber Pressure [MPa] 3.6 4.0 
FTP Rotational Speed [rpm] 50200 50500 
LTP Rotational Speed [rpm] 17100 17400 
Turbine Inlet Temperature [K] 380 600 

 

2.1.3 Vinci 

 The Vinci is the upper stage of the Ariane 5.  It has a design thrust of 180 

kN (40,000 lb)16, a design Isp of 464 s and uses an expander cycle, as shown in Figure 3.  

Similar to the LE-5B, H2 is the drive gas for both turbines.  It is intended to be capable of 

five restarts.  While the dual-turbine design eliminates the need for a gearbox (as in the 

RL-10), it requires an inter-propellant seal and associated purge system for the oxygen 

turbopump, which will add weight and negatively impact reliability and maintainability.  

Thus, this engine cycle is not the ideal candidate for IHPRPT Phase III application.  
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Figure 3: Vinci flow schematic6  

 

2.1.4 Aerojet Orbital Transfer Vehicle Engine 

 Beginning in July of 1983, Aerojet designed and built an oxygen 

turbopump intended for use in a dual expander cycle engine on an orbital transfer 

vehicle.9,10, ,17 This engine is shown schematically in Figure 4 and, unlike the target 

engine considered in this work, this engine does not use an aerospike nozzle.  

Additionally, this engine will require an H2/O2 heat exchanger that the DEAN will not.  

As a result, this engine does not offer the potential weight savings of the DEAN.  This 

engine design produces 3,750 lbf of thrust; design parameters for the oxygen pump are 

shown in Tables 3 and 4. This pump was designed with a two-stage impeller and a single 

10 



 

stage, full admission turbine.  A boost pump was required, driven by a hydraulic turbine 

supplied by a tap-off from the inducer discharge.  The rolling element bearings have 

reliability issues and life limitations due to the high operating speed (75,000 rpm).7    To 

avoid these problems, LOX-lubricated hydrostatic bearings were deemed necessary to 

meet the service life goals (500 starts/20 hours between overhauls and 100 starts/4hours 

with no service necessary17). This pump was tested at speeds up to 69,800 rpm (93% of 

design speed) for a total run time of 37 minutes while driven by nitrogen.  The pump 

achieved 88% of its design discharge pressure when driven with ambient temperature 

oxygen. The bearings operated successfully, with no abnormal wear. However, hot 

oxygen testing was not performed17.  
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Figure 4: Control and flow schematic of the Aerojet dual expander cycle10 
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Table 3: Aerojet LOX pump design point9 
 Boost Pump High Pressure 

Pump 
Number of Stages 1 2 
Weight Flow, lb/sec 5.5 5.5 
Volume Flowrate- Inducer, gpm  - 51.4 
Volume Flowrate- Impellers, gpm  34.7 34.7 
Suction Pressure- psia  15.0 54.6 
Discharge Pressure- psia  54.6 4654.6 
Inducer Head Rise- ft  - 525 
Head Rise per Stage- ft  80 4575 
Speed, rpm 12,700 75,000 
Stage Specific Speed, US units 2,722 787 
Impeller Discharge Diameter- in  1.41 1.62 
Impeller Discharge Port Width- in  0.097 .0812 
Efficiency, % 65.0 59.0 
Net Positive Suction Head, ft  0 (TSH = 4.3 ft) 80 
Suction Specific Speed,  24,800 20,100 
*TSH- Thermodynamic Suppression Head    

 
 

Table 4: Aerojet LOX pump design point parameters9 
Pump LOX 
Weight Flow- lb/sec 5.5 
Volume Flow- gpm 34.7 
Pressure Rise- psi 4600 
Speed- rpm 75000
Efficiency- % 59 
Specific Speed, rpm, gpm ,ft 790 
Turbine GOX 
Weight Flow- lb/sec 5.1 
Inlet Temperature, oR 860 
Inlet Total Pressure- psia 4315 
Outlet Static Pressure- psia 2236 
Efficiency (total-to static)- % 67 
Horsepower- shp 156 
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2.2 Technical Issues 

 In order for a LOX pump to successfully fulfill the goals laid out in 

Chapter 1, a number of technical hurdles must be addressed.  First, materials must be 

found that can tolerate both LOX (inducer and impeller) and hot oxygen (turbine).  

Bearings must be selected satisfying the reliability and service life goals.  The impeller 

and diffuser must be designed in such a way as to maximize throttleability. Finally, sound 

design methods must be used to complete the hydraulic design of the inducer, impeller, 

and turbine.  

2.2.1 Materials 

 Past LOX pumps intended for use on expendable platforms have 

successfully used impellers and casings fashioned from such materials as cast aluminum, 

stainless steel, Inconel 718, and K Monel.18,19,20  The use of the first two materials poses 

a fire risk due to a lack of ignition resistance in the event of a material rub.  The casing on

the LOX turbopump used in the Vulcain engine was changed from aluminum to Inconel 

after such a fire in the early 1990s.

 

21  Turbine materials for such applications (which used 

LOX/RP-1 or LOX/H2 combustion products as the drive gas) included Stellite 21, 

Hastelloy B and C, and Inconel 718.22  In contrast, this pump will use high-pressure, high 

velocity oxygen as the turbine drive fluid.  It is thus very important from both a safety 

and reliability standpoint to ensure the turbine is fabricated from a material tolerant to 

this expected environment without experiencing damage and meeting service life goals.   
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Likewise, the impeller material must be resistant to the potential hazards of 

rubbing friction and foreign particle damage in a liquid oxygen environment.23 The 

ignition potential from a particle strike or metal rub in pure oxygen was identified by 

Brannam et al. as the main technology issue in the development of the Aerojet pump.14 

To assess the suitability of candidate materials for this type of service, 

Schoenman24 performed friction rubbing tests and particle impact tests in a high 

temperature gaseous oxygen environment.  Apparatus for these tests are shown 

schematically in Figures 5 and 6, respectively.  A summary of the results of both test 

results are shown in Table 5.  Guided by similar data and the need to have acceptable 

mechanical properties (qualities lacking in the top three materials in Table 6), Buckmann 

et al. chose to construct their pump from Monel.9 

 

 
Figure 5: Schematic of friction rubbing test apparatus24 
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Figure 6:  Schematic of article test apparatus24 

T  5: Summ
 Factor

p
 
 

able ary material ignition results23 
Material Burn Observations 
Zirconium Copper 35 No ignition in any tests (790/1800oF) 
Nickel 200 550 Ignition above 2200oF in FRT only (825/2200oF)
Silicon Carbide 1145 No ignition limited testing (850/ - oF) 
Monel 400 1390 Ignition above 1200oF in FRT only (800/1200oF)
K-Monel 500 2090 Ignition above 1500oF in FRT (750/1500 F) o

Inconel 600 ly ( - /1000oF) 3226 Ignition above 1100oF in FRT on
316 Stainless Steel 4515 Ignition in all tests (450/800oF) 
Invar-36 5444 Ignition in all tests (675/340oF) 
Hastelloy-X 7160 Ignition in all tests (725/750oF) 

 

2.2.2 

 of the 

e 

Bearings 

 Bearing inspection and replacement is a time-consuming procedure 

representing a significant portion of the maintenance cost of a reusable propulsion 

system25. Ball bearing wear has been a recurring life-limiting factor during testing

Space Shuttle Main Engine26 and it is believed unlikely their performance will b

16 



 

bettered by an operational system in the near term.  Although Urke suggests an 

expendable system would not require hydrostatic bearings below a design speed of 

40,000 rpm, it is likely a pump whose duty cycle refle ts that envisioned by the IHPR

Phase III requirements will need hydrostatic bearings.

c PT 

d, the 

a reduction in parts count with salutary implications for reliability 

2.2.3 

 

 

y art 

present

peller 

17  Scharrer, Tellier, and Hibbs 

mentioned several applications where this bearing design choice benefits the overall 

engine performance, specifically in thrust to weight.27  By increasing pump spee

overall weight of the pump can be reduced.  An additional benefit of the use of 

hydrostatic bearings is 

and maintainability.28 

Hydraulic Design and Throttleability  

 The initial performance requirements of the LOX pump considered in this 

work was obtained by performing a cycle power balance at the design point and using the

resulting parameters as inputs into the pump sizing routine suggested in Humble, Henry, 

and Larson29; the resulting pump characteristics are shown in Table 6. There is a wealth 

of historical practices that apply to the problem of designing an inducer/impeller system 

to accomplish this task and to the design of a turbine required to drive it.11,22 ,30,31  Many

of these are based on empirical correlations such as the specific speed/ efficienc  ch

ed in Urke17 or the blade number envelope presented in NASA SP-8109.18  

Oyama and Liou identified the exit blade angle, entrance and exit blade numbers, 

and blade thickness as design parameters having the most impact on successful im

design.32  Veres presents a method for predicting the off-design performance of a 

centrifugal pump.33  Off-design performance is of great importance for a pump, as most 
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pumps service 

f a wide 

throttlin

bine 

design was chosen.35  Other advantages of this approach as compared to an axial turbine 

include durability, greater manufacturability, and a higher per-stage work output.36  

 

 

Table 6: P eristics 
 

are required to operate below design flow for a significant fraction of their 

lives.  

 Veres also presents suggestions for ensuring a pump is capable o

g range; among these are to specify nearly tangential blade angles, the use of 

vaneless diffusers, and the use of a higher number of impeller blades.34 

Based on the need to have a compact, efficient turbopump, a radial inflow tur

 

reliminary pump charact
Shaft Speed Rotation/Minute (RPM) 31000 
Head Rise Feet (ft.) 8241.5 
Power Required Brake Horsepower (BHP) 1627.7 
Flow Gallons/Minute (GPM) 591.7 
Mass Flow Pounds Mass/Second (lbm/s) 106.2 
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3 Methodology 

This chapter discusses the design methodology used in this work.  It begins with 

the initial power balance and NPSS results, and proceeds to the impeller and turbine 

design.  

3.1 Initial Power Balance 

In order to define the performance parameters required of the pump, an initial 

power balance was performed using equations below presented in Humble, Henry, and 

Larson.29  The master power balance equation is:    

     

1

0 11req t p i
p trat

g m HP mc T
p

γ
γ

η
η

−•
•

⎡ ⎤
⎛ ⎞⎢ ⎥= = − ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

               (1) 

Where Preq represents the required pressure, the quantity to the left of the second 

equals sign represents the power required by the pump, and the quantity on the right is 

the power supplied by the turbine; NIST data was used to find the heat capacity and γ at 

the desired inlet temperature.  The turbine expansion ratio, ptrat, is simply the ratio of the 

inlet to outlet turbine pressures, and the outlet turbine pressure is constrained by the 

combustion chamber pressure.  With the goal Isp known, this may be found by using 

equations (2) through (5) below: 

(
11

1

0 0

2 2 1
1 1

e
sp e a

c c

pc c )I p p
g p g

γγ
γγγ ελ

γ λ

−+
∗ ∗−

⎧ ⎫⎡ ⎤
⎛ ⎞⎪ ⎪⎛ ⎞⎛ ⎞ ⎢ ⎥= − +⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥− +⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭

p
−   (2) 
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⎥    (5) 

The exit Mach number (Me) may be determined implicitly from the nozzle 

expansion ratio (set by the nozzle design) via equation (5). With the combustion chamber 

pressure set, the mass flow required may be determined from the thrust goal, the target Isp 

and the relation Isp = F/W.7  The pump head required may be determined from the sum of 

the pressure drops through the cooling system, the injector, and the turbine; the last of 

these may be found if the turbine pressure ratio is known.  Thus equation (1) was solved 

iteratively for the turbine pressure ratio with the seven following assumptions: 

 

1. Oxygen behaves ideally at all operating conditions experienced by the pump 

2. the pump has a total efficiency of 85%  

3. the turbine has an efficiency of 90% 

4. combustion chamber pressure of 1,740 psi (12 MPa) calculated based on goal 

Isp 

5. total pressure drop of 20% in the cooling jacket and 300 psi (2.07 Mpa) 

between the turbine exhaust and combustion chamber (includes injector pressure 

loss) 
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6. a thrust requirement of 50,000 lbf (222 kN) 

7. target Isp specified in Phase III IHPRPT goals. 

Combined with results from NASA’s Numerical Propulsion Simulation System 

(NPSS)37, this analysis yielded the design point values for pump and turbine 

characteristics listed in Table 7.  The design process is illustrated in Figure 7.  

 

 

Figure 7: Design process block diagram 
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Table 7: Turbopump design point 
Pump inlet pressure, psi (Mpa) 45  (.31) 
Pump output pressure, psi  (Mpa) 4500  (31) 
Mass flow, lbm/s (kg/s) 106 (48.1) 
Turbine inlet total pressure, psi 3663 (25.26) 
Turbine total pressure ratio 1.8 
Turbine inlet total temperature, R (K) 600 (333) 
Shaft speed, rpm 32000 

3.2 Pump Design 

To aid in the detailed design of the impeller, the Concepts NERC software 

package Pumpal38 was used.  This package uses a mean line (mass averaged one 

dimensional analysis along a streamline) code to size and predict the pump performance. 

This software may be operated in two modes of interest for this work: design (which is 

used to create impellers and determine performance at the design point) and analysis 

(which is used to determine off-design characteristics and draw the pump maps shown in 

chapter 4). Inputs to the program are shown in Table 8 below. 

 

Table 8: Pumpal inputs 
Inlet total pressure, psi (MPa) 45 (0.31) 
Inlet total temperature, oR  (K) 150 (83.3) 
Inlet mass flow, lbm/s (kg/s) 106 (48.08) 
Speed, rpm 32000 
Total Dynamic Head, psi (MPa) 4500 (31.03) 
Impeller inlet incidence angle (hub) 2o 
Impeller inlet incidence angle (mean) 2o 
Impeller inlet incidence angle (tip) 2o 
Impeller inlet blade number 7 
Leading edge blade thickness, in (mm) .0625 (1.588) 
Inclination angle at impeller exit 90o 
Impeller exit blade number 14 
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The impeller inlet and exit blade numbers were chosen based on the guidance in 

Oyama and Liou32 so as to maximize the total head produced by the pump and minimize 

power required.  The incidence values were chosen to be small in accordance with the 

guidance in Japikse, Marscher, and Furst39 to prevent flow separation and stalling at the 

inlet and to help ensure a wide throttling range.  

3.2.1 Impeller Inlet 

In order to determine optimum impeller dimensions, Pumpal was run in design 

mode, which first sets the impeller inlet tip radius (the optimum value of which 

corresponds to minimum tip relative speed) via the following equation40:                                                          

  ( )1/ 2
1t  2 2

1h 1t

30 2R  =
N(1- (R / R ) ) 

Q
π     (6) 

where N is the pump’s rotational speed, Q is the volumetric flow rate,  is the 

inlet hub radius, and  is the inlet tip radius. This equation assumes no inlet swirl, and 

the inlet hub-to-tip ratio is fixed.  In order to determine this, the impeller eye is sized to 

obtain the minimum Net Positive Suction Head Required (NPSH):  

1hR

1tR

                      2

1
1 1(1 )
2 2t b bNPSH C Uρ σ σ= + + 2

1t                             (7) 

Where ρ is the inlet density, C1t  is the absolute flow velocity at the tip inlet, U1t  is 

the blade tip speed at the inlet, and σb is the slip factor, which is assumed constant. By 

minimizing the NPSH requirement, the designer allows himself a greater range of 

cavitation-free flow and thus a larger potential operating range for the pump.   

Minimum NPSH then occurs when: 
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       (8) 

The blade angle is then set by: 

                                   1 1 1 _tb t t optIβ β= +                                                              (9) 

                                 1 1 1 _mb m m optIβ β= +                                                            (10) 

                                1 1 1 _hb h h optIβ β= +                                                               (11) 

The subscripts t, m, and h correspond to the tip, mean, and hub respectively, βb is the 

blade angle, β is the flow angle, and I is the incidence specified in Table 8. 

3.2.2 Impeller Outlet 

The impeller outlet calculation scheme selected optimizes the impeller outlet 

radius and impeller exit width.  The outlet radius is adjusted to match the desired head 

rise, while the exit width is based on the value of the exit swirl parameter (defined as the 

ratio of the tangential to meridional velocities).   

3.2.3  Volute 

To begin the volute calculation scheme, a loss coefficient (LC57) is determined, 

where LC57 is the sum of a meridional ( ) and tangential loss coefficient ( ), total 

loss of the meridional component of the entering kinetic energy is assumed, and: 

mLC tLC

                                              2

1
1mLC

λ
=

+
                                                   (12) 

                                     ( )2 2
5

2
6

1/
1t

ARrLC
r

λ
λ

−⎛ ⎞
= ⎜ ⎟ +⎝ ⎠

                                         (13) 
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Here λ , the inlet swirl parameter, is defined as the ratio of the tangential and 

meridional velocities at the volute inlet (station 5), AR is the ratio of the volute throat 

area to the volute inlet area, and  is the average of the inlet and throat radii; if the 

core flow accelerates (Ct5 < C7) as happens in the design case, there is no loss in the 

tangential velocity component and so  becomes zero.  After LC57 is determined, 

other properties at the volute throat (station 7) may be determined as follows:                            

tLC

tLC

 

                                  07 05 0557*( 5)P P LC P P= − −

)

                                         (14) 

                                         07 07 05( ,T f P H=                                                     (15) 

                                          07 07( ,s f P T )=                                                         (16) 

 

 

 

Static properties at the volute throat (station 7) are then calculated in an iteration 

loop using equations (17)-(21):   

                                              
7 7*t
MC

A ρ
=                                                        (17) 

                                             
2

7 05 2
tCH H= −                                                      (18) 

                                            7 7( ,P f H s)=                                                         (19) 

       7 7( ,T f H P7 )=                                                         (20) 

                                           7 7( , )7f T Pρ =                                                          (21) 
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The pressure recovery coefficient at the volute exit (station 8) is determined by a 

blockage correlation model, illustrated in Figure 8, which assumes a blockage of 12% at 

the volute throat. Once this coefficient (CP78) is determined, other properties may be            

determined in an iterative process as done for station 7: 

                                       8 7 07 778*( )P P CP P P= + −                                          (22) 

                                                   08 07H H=                                                       (23)  

CP78 vs B7
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Figure 8:  Blockage correction for Station 8 pressure recovery40 
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3.2.4 Analysis Mode 

In order to determine off-design performance and draw the pump maps presented 

in Chapter 4, Pumpal must be run in analysis mode.  In this mode, the total pressure and 

temperature at the impeller inlet are fixed from the upstream conditions and the velocity 

triangles and static conditions are solved via an iterative process using equations (24) to 

(29):   

      ( )01 11* /(1 1)P P LC P LC∞= + +                              (24) 

                                              ( )01 ,h h T P∞ ∞=                                                    (25) 

                                              ( )1 01 0,s s h P= 1

)

                                                    (26) 

                                            
(1

1 1 1 1m
mC

A Bρ

•

=
−

                                               (27) 

        ( )1 1 / cosmC C 1α=                                                 (28) 

                                            2
1 01

1
2

h h C= − 1                                                              (29) 

              ( )1 1,h sρ ρ= 1                                                              (30) 

LC1 is the upstream loss coefficient, B1 is the upstream blockage, 1α  is the inlet 

flow angle, A1 is the impeller inlet area, m
•

is the mass flow, C1 is the impeller inlet 

absolute velocity,  is the impeller inlet meridional velocity (both at the RMS 

position), and 

1mC

ρ , h , and symbolize density, enthalpy, and entropy, respectively, which 

are calculated based on NIST data. 

s
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A two-zone model is used to determine the conditions at the impeller exit.  This 

model divides the outlet flow into two zones (primary and secondary), and employs these 

basic assumptions:  

1. The primary zone flow is assumed to be isentropic; all losses inside the    

impeller passage occur in the secondary zone. 

2. At the impeller exit, the primary zone and secondary zone have the same static 

pressure. 

 

 

The first step in this process is to calculate the relative velocity in the primary 

zone: 

2 1 *p tW W DR2=                                                (31)  

2 pW  is the primary zone relative velocity at the impeller exit,  is the relative 

inlet velocity at the impeller tip, and DR2 is the diffusion ratio, defined by: 

1tW

1

2

2 t

p

WDR
W

=                                          (31)   

The value of DR2 is determined by a specific speed function, illustrated in Figure 

9 (with the specific speed given in the figure in English units) which has been derived 

from past pumps. With  known, the assumption of rothalpy conservation2 pW 41 is applied, 

as explained below.  

28 



 

 If the flow through a thin annular passage bounded by two stream surfaces is 

analyzed, the torque (τ ) acting on the fluid between two meridional locations is given by 

the conservation of angular momentum42:   

τ = m
•

(r2Cθ2 − r1Cθ1)     (32Α) 

With r being the radius at each station, and Cθ being the absolute tangential flow 

velocity.  The power imparted to the fluid is then the product of this torque and the 

angular velocity Ω41:   

τ  Ω =  m
•

(U2Cθ2 − U1Cθ1)    (32Β) 

Τhe work done on the fluid per unit mass (specific work) is the power divided by the 

mass flow rate, or U2Cθ2 − U1Cθ1.   

Since the specific work done on the fluid is equal to the change in total enthalpy for 

steady, adiabatic, and irreversible flow, 

h02 − h01 = U2Cθ2 − U1Cθ1     (32C) 

With total enthalpy defined as h0 =  h+ 0.5C1
2   equation (32C) may be rearranged to 

give41: 

h1 + 0.5C1
2 -  U1Cθ1 = h2 + 0.5C2

2 -  U2Cθ2 = Ι 

Where I is defined as the rothalpy (rotational stagnation enthalpy), a quantity that is 

unchanged between impeller entrance and exit. 

Applied here, the assumption of constant rothalpy gives:  

                       
2 2 2

2 2 1
2 12 2 2 2

p
p

W U Wh h+ − = + −
2

1U                        (33) 

This may be rearranged to find the static enthalpy: 
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                                         (34) 

Since the flow in the primary zone is assumed to be isentropic, 

 2 ps =                                                 (35) 

With  and  known, other thermodynamic properties such as P2p, T2p, and 

ρ2p  may be determined.  The primary flow angle (

2 ps 2 ph

2 pβ ) may then be found from the 

impeller exit blade angle ( 2bβ ) and the deviation angle ( 2sδ ) from equation (36): 

  2 2p b 2sβ β δ= +                                                           (36) 
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Figure 9:  Diffusion Ratio/Specific Speed Function used by Pumpal40 
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The velocity triangle is completely defined with 2 pβ  and .  After the primary 

zone has been completely defined, the mass fraction in the primary zone may be 

calculated: 

2 pW

2 2 2(1 ) cos( )
1 p pA W

m

2 pρ ε β
χ •

−
− =                                  (37) 

 

 

where the secondary flow mass fraction (χ, which is determined by the program as 

a function of specific speed) is defined as: 

s

tot

m

m
χ

•

•=                                                            (38) 

where the subscripts s and tot refer to the secondary and total flows, respectively, 

and the secondary area fraction (ε) is defined as: 

2

2

sA
A

ε =                                                         (39)  

The secondary area fraction may be found from: 

2 2 2 2

(1 )1
cos( )p p p

m
A W

χε
ρ β

•
−

= −                                           (40) 

Also, since  

2 2 2 2( ) cos( )s sA W

m
sρ εχ •=

β                                          (41) 

the secondary zone relative velocity ( 2sW ) may be found from: 
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=                                                (42) 

With 2sW  known, conservation of rothalpy41 may be applied in a similar fashion 

to the primary zone in order to determine the static enthalpy of the secondary zone: 

22 2
21 1

2 2( )
2 2 2 2

s
s

WW U Uh h= + − − +
2
2                                          (43) 

With the secondary zone static pressure known from assumption 2 above (equal static 

pressures in both zones), all the thermodynamic properties may be determined.   

 

The secondary flow angle may then be determined from the impeller exit blade 

angle and the secondary deviation angle ( 2sδ ): 

2 2 2s b sβ β δ= +                                                   (44) 

With 2sW  and 2sβ  known, the velocity triangle for the secondary zone is fully 

defined.  The primary and secondary zones are assumed to mix instantly and uniformly at 

the impeller exit.  The mass and momentum conservation equations that apply to this 

situation are as follows: 

2 2 2 2 2 2(1 )m M m p M p s M sC A C A C Aρ ρ ε ρ= − + ε

}

                            (45) 

2 2

2 2 2
2 2 2 2 2 2( ) { (1 )

M m M pp m m p s sP P A C A C A C Aρ ρ ε ρ− = − − + ε

2

        (46) 

2 2 (1 )t m t s t pC C Cχ χ= + −                                             (47) 

The subscript m signifies mixed out conditions.  The specific total enthalpy after 

mixing, , after accounting for power losses from front and rear leakage 

(

02mh

fleakP and , respectively)  disk friction ( ), and recirculation( ) is :  rleP ak dfP recircP
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m a

P P P P
h h

m
•

+ + +
= +                                      (48) 

With the fluid’s equation of state fixed (this case uses NIST43 data for Oxygen), 

equations (45) through (48) may be solved iteratively to determine the conditions after 

mixing. 

3.3 Turbine Design 

The Concepts NERC software Rital44 was used to design the turbine. This 

software uses a meanline code to predict turbine performance.  Initial inputs to the 

program are shown below: 

Table 9: Initial turbine design inputs 
Inlet total pressure, psi (MPa) 3663 (25.26) 
Outlet total pressure, psi (MPa) 2035 (14.03) 
Inlet total temperature, R (K) 520 (288.9) 
Shaft speed, rpm 32000 
Mass flow, lbm/s (kg/s) 95 (43.09) 
Optimum incidence, degrees -35 
Power required, hp (kW) 2215 (1651.7) 

 

The optimum incidence angle was chosen based on the range suggested by 

Moustapha, et al.45 and the guidance given by Rohlik  based on the need to prevent flow 

separation in the blade passage and past design experience and experimental results. 

Other inputs were derived from the power balance and Pumpal design. 

35

3.3.1 Preliminary Sizing 

In order to determine initial parameters for the turbine, Rital was run in 

preliminary design mode, which requires the user to specify three of the following 

conditions: inlet total pressure, exit static pressure, mass flow rate, and power.  Since the 
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power requirement, inlet total pressure, and mass flow were determined in the power 

balance and fluid-end design, these properties were chosen.   

The preliminary sizing algorithm46 uses a specified optimum flow coefficient (φ , 

defined in equation (49) below) and loading coefficient (ψ, defined in equation (50) 

below): 

6

4

MC
U

φ =                                                             (49) 

  0
2
4

h
U

ψ Δ
=                                                              (50) 

where 6MC  is the rotor exit meridional velocity,  is the rotor tip speed, and  is the 

actual specific enthalpy change.  The value of 

4U 0hΔ

φ  was chosen to be 0.25 for maximum 

efficiency as suggested by the program and echoed by Mathis47 based on past design 

experience. The loading coefficient was chosen to be 0.9, as suggested by the program 

based on past results46.  After the rotor inlet radius is found, RITAL proceeds to calculate 

the rest of the nozzle and rotor geometry as follows. 

The velocity triangle at the rotor outlet is found by assuming a rotor meridional 

velocity ratio,ξ , of unity and zero exit swirl; along with a specified incidence, this sets 

the rotor inlet angle. Continuity considerations then determine the blade inlet width. 

The selected φ  may be used along with the assumption of zero exit swirl to 

determine the rotor exit area and thus the exit tip radius; the ratio of rotor exit hub radius 

to rotor inlet radius is set to 0.3.  The exit blade angle is calculated with an assumed 

deviation angle, 6δ , of 5 degrees.   The axial length (AxLen) is found from the relations 

below: 
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4

AxLen 0.6
R

= , for  6

4R
sR  >0.7                                      (51) 

4

AxLen 0.4
R

= , for 6

4R
sR  < 0.4                                       (52) 

Intermediate values are found by linear interpolation.  The blade thickness is set 

as two percent of the tip radius, while inlet and outlet clearances are set at one percent of 

the inlet blade height. 

The nozzle exit to rotor inlet radius is fixed at 1.05; the velocity triangle is 

determined from conservation of mass and angular momentum from rotor inlet.  The 

blade angle is then found assuming a two degree deviation angle. The nozzle inlet ratio is 

then set as 1.25 times the nozzle exit ratio. The nozzle exit blade angle is either set to 

zero or calculated assuming a straight blade, depending on the deviation model selected; 

in this case a straight blade was assumed. Results of this step are listed in Table 11 in 

Chapter 4. 

3.3.2 Final Design 

After completion of preliminary sizing, RITAL was run in a design mode that 

required the user to input the exit total pressure (known in this case from the initial power 

balance) and returned the nozzle exit blade angle.  This mode was used to create the final 

design and to set such parameters as the number of nozzle and rotor blades, axial and 

radial clearances, and rotor exit hub-to-tip ratio.   

The number of nozzle blades selected was based on a relation given by Mathis47: 

6
( / )2

/ cos( )
m

te te

b s rZ
t

π δ
α

=                                                      (53) 
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where ( /  is the blockage ratio, is the mean radius,  is the trailing edge thickness, 

and 

)b s

te

mr tet

α  is the flow angle. 

 

To determine the number of rotor blades, a relation presented by Rohlik35 to 

determine the minimum number of blades necessary to prevent flow separation was used:  

2
10.03( 57) 12n α= − +      (54) 

Where n is the minimum number of rotor blades and 1α  is the nozzle exit flow angle in 

degrees as determined in the previous step. 

The axial clearance was chosen to be one percent of the inlet blade height (due to 

manufacturability concerns) and the radial clearance was chosen to be one half of one 

percent of the exit blade height to maximize total efficiency in light of the results 

presented by Futral and Holeski48 who found that the deleterious effect of increasing 

radial clearance on total efficiency was ten times greater than an equal percentage 

increase in axial clearance.   In accordance with the guidance in Mathis47 the rotor exit 

hub-to-tip ratio was chosen to be about 0.33 to enable the use of a smaller and less 

expensive rotor.   

Nozzle losses were modeled by a user-specified loss coefficient that is used to 

calculate the difference between actual and ideal static enthalpy at the trailing edge of the 

nozzle. Based on guidance presented in the program and by Dixon41 for well designed 

nozzle rows in normal operation, this was chosen as 0.04. 

The deviation in the nozzle,δ , was modeled using a modification to the Howell 

correlation proposed by Jansen49: 
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= − = −                                      (55) 

where is a constant, chosen as 0.13, 3a 3α  is the nozzle exit flow angle, 3bα  is the 

nozzle exit blade angle, 1bα  is the nozzle inlet blade angle,  and are the nozzle inlet 

and outlet radii, respectively,  

1r 3r

NZ  is the number of nozzle blades, and C is the blade cord. 

There are four types of rotor losses modeled by the program: clearance, incidence, 

trailing edge, and passage losses.  These are detailed below.  

Passage losses in the rotor are modeled using a NASA loss model that calculates 

the passage loss as a fraction of the mean passage kinetic energy: 

2 2 2
4

1 ( cos )
2p pL K W i W= 5+                                              (56) 

where i is the angle between the incoming flow and that at the best efficiency point, is 

the passage loss, W4 is the relative velocity  at the rotor entrance, W5 is the relative 

velocity at the rotor exit and  is an empirical coefficient whose value is set at 0.3. 

pL

pK

Incidence losses (Li) are modeled as the loss of tangential kinetic energy as the 

flow turns from the inlet flow angle to the angle at the best efficiency point: 

2 2
4

1 sin
2iL W= i                                                            (57) 

Clearance losses ( ) are assumed to be a function of the clearance/ blade height 

ratio: 

cL

5

r
c cL K

b
ε⎛ ⎞

= ⎜ ⎟
⎝ ⎠

                                                             (58) 

Here rε  is the exit clearance and  is the outlet blade height. 5b
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4 Results 

This chapter presents and discusses the results of the DEAN Oxygen pump design 

study.  Concepts NERC’s Pumpal38 and Rital44 programs were used to model the pump 

and turbine, respectively.  This pump was designed to enable the DEAN to achieve 

IHPRPT Phase III performance and logistics goals and was required to deliver 106 lb/s 

(48.08 kg/s) LOX at a pressure of 4,500 psi (31.03 MPa) based on the power balence.  

Inputs to Pumpal and Rital are listed in Appendix A. 

4.1 Pump Results 

The final pump design and performance parameters are listed in Table 10; angles 

listed are measured using the meridional convention. This pump will deliver 106 lbm/s 

(48.08 kg/s) LOX at a total pressure of slightly over 4600 psi ( 31.7 MPa) while 

demanding a power input of 2215 hp (1651 kW).  Figure 10 is an illustration of the final 

impeller.  

Table 10: Pump design and performance parameters 
Total Inlet Pressure, psi (MPa) 45   (.31) 
Total Inlet Temperature, R (K) 150  (83.3) 
Mass Flow, lbm/s (kg/s) 106  (48.08) 
Volumetric Flow rate, ft3/s ( ) 3 /m s 1.45  (0.041) 
Rotational Speed, RPM 32000 
Inlet Blade Number 7 
Outlet Blade Number 14 
Inlet Blade Angle, mean, degrees -74.376 
Outlet Blade Angle, degrees -59.98 
Total Exit pressure, psi (MPa) 4635  (31.96) 
Total Head Rise, ft (m) 9013  (2747) 

t tη − , % 77.3 
Net Positive Suction Head, ft (m) 67  (20.4) 
Non-dimensional Specific Speed 0.322 
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Figure 10:  Final impeller 

 

The final design speed was chosen as a compromise between the desire to have a smaller 

pump (which would argue for a faster rotational speed) and the necessity to avoid 

excessive friction heating in the pump or turbine that could lead to catastrophic pump 

failure (which would dictate a lower speed).  As pointed out by Campbell and Farquhar19 

other limits on shaft speed which should be considered include allowable stresses, gear 

and seal velocities, and optimum specific speed.  The speed chosen (32,000 rpm) is in the 

range of current state of the art LOX pumps and should be attainable.6,13,15   

Figure 11 is the pump head/flow curve.  Based on the guidance in NASA SP-

810711 that a pump-engine system becomes unstable when the slope of the head/flow 

lines are positive, this pump will be capable of throttling down 32 per cent from its 

maximum flow at design speed. Its total throttling range (down to half the design speed)  
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Figure 11:  Pump overall performance map 

 

will be 66%. The true lower boundary will depend on pressure losses in the cooling 

jacket which will decrease as the volumetric flow and thus flow velocity decrease.  

Figure 13 shows the pump’s head/flow behavior and the surge line, which is found by 

connecting points of zero slope on each of the constant speed lines. The stable operating 

range is to the right of this line.  Given that the pump exit total pressure must be greater 

than 2,600 psi (17.9 MPa) due to combustion chamber pressure requirements (assuming a 
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constant pressure loss in the cooling jacket of 20 per cent at all flow conditions), the 

lowest speed line in Figure 13 likely represents a pressure rise that is of no use to the 

engine.  The lowest useful flow likely obtainable is then 59 lbm/s (26.8kg/s), or 52% of 

the maximum flow at design speed. 

Figure 14 shows the pump’s Net Positive Suction Head (NPSH) requirements as a 

function of flow rate. As expected, these requirements increase as the flow increases. The 

NPSH available may be calculated by the relation: 

2

2
m

static vap
CNPSH H H

g
= + −                                                 (59) 

where staticH is the static head, Cm is the impeller inlet absolute velocity, and is the 

head due to vapor pressure.  Calculating this quantity using the method suggested by 

Perry, Green, and Maloney

vapH

50 gives an available NPSH of 134 ft (40.8 m) at the design 

point, against a requirement of 67 ft (20.4 m) as shown by the circled point in Figure 13.  
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Figure 12:  Pump power curve 
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Figure 13:  Pump map with surge line 
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Figure 14:  NPSH curve 

4.2 Turbine Results  

The final turbine design and performance parameters are listed in Table 11.  This turbine 

will supply approximately 10 per cent more power than the pump currently requires; the 

rotor is illustrated in Figure 15.  The specific speed at the design point is very close to the 

0.43 suggested by Kofskey and Nusbaum51 for optimum static efficiency and within the 

range suggested by them for maximum total efficiency. 
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Table 11: Turbine design and performance parameters 
Total-to-total Pressure ratio 1.80 
Total-to-static Pressure ratio 1.98 
Inlet Total Temperature, R (K) 600 (333) 
Inlet Total Pressure, psi (MPa) 3663 (25.26) 
Mass Flow rate, lbm/s (Kg/s) 95 (43.1) 
Rotational Speed, RPM 32000 
Nozzle Blades 15 
Rotor Blades 22 
Rotor Hub-to-tip Ratio 0.326 
Rotor Exit Blade Angle, degrees -60 
Velocity Ratio, U/C0 0.796 

t tη − , % 94.1 

t sη − , % 82.6 
Non-dimensional Specific Speed 0.438 
Power, hp (kW) 2441 (1820) 

 

The turbine’s efficiency/velocity ratio curve is shown in Figure 16.  The overall 

trend mirrors that presented by Kofskey and Holeski52 for a slightly (~7%) larger turbine 

and is similar to that seen by Kofskey and Wasserbauer53 for a turbine approximately half 

as large.  The peak total efficiency occurs at a slightly higher value of velocity ratio than 

that corresponding to the design point, although the difference is slight (roughly one-half 

of one percent).  

Figure 17 shows the corrected mass flow (defined as 0

0

m T
P

•

) as a function of 

expansion ratio. The curves seen are typical of subsonic turbines, with mass flow 

increasing as pressure ratio increases for all speeds; the turbine does not experience 

choked flow.  This indicates that the turbine is not a limiting factor for throttleability. 

Figure 18 shows the variation of total efficiency with specific speed; the optimum 

specific speed for this turbine is 0.465, near that of Kofskey and Nusbaum.51  
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Figure 15: Turbine rotor 
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Figure 16:  Variation of total efficiency with velocity ratio 
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Figure 17:  Variation of corrected mass flow with expansion ratio 
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Figure 18:  Total efficiency variation with specific speed 

 

4.3 Sensitivity Analysis 

In order to determine the most promising areas for future improvement, a 

sensitivity analysis was done for both the pump and turbine using power as the quantity 

to be optimized (minimum power requirement for the pump and maximum power output 

for the turbine); the results of this process are shown in Table 12.   
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Table 12: Sensitivity Analysis 
TURBINE 

Mass 
flow,lbm/s 
(Kg/s) 

Inlet 
Tempeature, 
R (K) 

Inlet 
Pressure, 
psi (Mpa) 

Nozzle 
blade # 

Rotor 
Blade 
# 

Rotor blade 
angle,Degrees 

Power, 
HP 
(kW) 

(deltaHP)/ 
(deltaQ/Q)

95 
(43.1) 

600 (333) 3663 
(25.26) 

15 22 -60 2441 
(1820) 

NA 

90 
(40.8) 

600 (333) 3664 
(25.26) 

15 22 -60 2313 
(1725) 

-2432.0 

95 
(43.1) 

568 (315.6) 3665 
(25.26) 

15 22 -60 2268 
(1691) 

-3287.0 

95 
(43.1) 

600 (333) 3470 
(23.92) 

15 22 -60 2246 
(1675) 

-3705.0 

95 
(43.1) 

600 (333) 3663 
(25.26) 

14 22 -60 2437 
(1817) 

-60.0 

95 
(43.1) 

600 (333) 3663 
(25.26) 

15 23 -60 2434 
(1815) 

-154.0 

95 
(43.1) 

600 (333) 3663 
(25.26) 

15 22 -56.84 2431 
(1813) 

-190.0 

        
PUMP 

Main 
Blades 

Total 
Blades 

Blade 
Angle 

Blade 
Thickness

RPM Volute exit 
diameter ratio 

Power, 
HP 
(kW) 

(deltaHP)/ 
(deltaQ/Q)

7 14 -59.98 0.1 32000 2 2215 
(1652) 

NA 

6 12 -59.98 0.1 32000 2 2225.451
(1660) 

73.2 

7 7 -59.98 0.1 32000 2 2249.402
(1677) 

68.8 

7 14 -56.82 0.1 32000 2 2254 
(1681) 

741.0 

7 14 -59.98 0.095 32000 2 2219 
(1655) 

-494.0 

7 14 -59.98 0.1 30316 2 2189 
(1632) 

-692.6 

 

For the turbine, the three factors with the most impact on power delivered are 

inlet mass flow, inlet temperature and inlet pressure. Changing these parameters by  

roughly five percent lead to a power loss of 5.2, 7.1, and 8.0 percent, respectively.   
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All three of these quantities depend heavily on attributes of the rest of the engine (e.g., 

chamber combustion temperature, chamber length, materials of construction) and 

especially in the case of inlet pressure, on assumed performance characteristics (in this 

case, the pressure drop to be expected in the cooling jacket). 

None of the factors evaluated on the pump side had as much impact on power 

requirement as the top three turbine factors. Pump power requirements were most 

affected by blade angle, blade thickness, and rotational speed.  Among these parameters, 

rotational speed had the greatest impact. This parameter, in turn, is dependant on the 

turbine: in the absence of a gear box, both must rotate at the same speed.   

Slowing the speed of the pump will necessitate a lower specific speed for the 

turbine and thus represents potential impact on turbine efficiency.  While the speed in the 

Table 13 corresponds to a turbine specific speed of 0.415, still within the range suggested 

by Kofskey and Nusbaum51 for maximum total efficiency, this parameter must be varied 

with care to avoid a deleterious impact on the turbine. Additionally, as pointed out in 

NASA SP-810711, throttling range usually increases with increasing specific speed for 

sweptback impellers with constant discharge blade angles due to the decrease in head 

coefficient with increasing specific speed.  Therefore, a reduced pump speed is expected 

to result in a reduced throttling range.  

4.4 Shaft and Bearings 

The shaft diameter was determined based on stress criteria rather than stiffness 

(critical speed) criteria as is usual54 since the rotodynamic analysis necessary to 

determine the latter quantity is outside the scope of this effort. From a stress perspective, 
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minimum required shaft diameter may be found by considering the power supplied by the 

turbine using the relations55:   

2
P

f
τ

π
=                                                              (54) 

allowable

J
c

τ
σ

=                                                         (55) 

y
allowable

σ
σ

δ
=                                                         (56) 

J is the polar moment of inertia, f is frequency (in Hz), c is the shaft radius, P is the 

turbine’s power output, yσ is the yield stress (found to be 168 ksi for Inconel 71856), 

allowableσ  is the allowable stress, δ is a safety factor (chosen to be 1.2 in accordance with 

the safety factor chosen for the RL-1054) and τ  is the shaft torque.  The shaft must thus 

be at least 0.26 in (6.604mm) in diameter; this would correspond to a DN number of 

about 211,000. Based on the relatively low DN number and the need to meet IHPRPT’s 

reliability and maintainability goals, a ceramic hybrid ball/hydrostatic bearing is the best 

choice for this application; these have been tested up to a DN number of 3 million57.  The 

primary motivation for selecting these bearings is to take advantage of the long service 

life of hydrostatic bearings26 while using ball bearings to accommodate the transient 

loads occurring at start-up and shut down. Ceramic balls are preferred due to their 

increased resistance to liquid oxygen relative to steel.  

The maximum shaft length, which is calculated based on the maximum allowable 

deflection, is calculated from the relation given by Karassik, et al.58:  

3wlf
CEI

=                                                              (57)   

52 



 

where f  is the shaft deflection (a maximum allowable value of 0.006 in (0.152 mm) was 

chosen), w is the weight of the rotating elements, C is a coefficient which depends on 

load distribution and shaft support method (set to one for purposes of this calculation), E 

is the modulus of elasticity, and I is the moment of inertia.  For an Inconel 718 shaft, the 

maximum length is 3.4 in. The expected axial loads and fatigue limits calculated by the 

Concepts NERC software AxCENT59 for Inconel-718 are shown in Table 14 and 

suggested bearing locations are shown in Figure 18.  A representation of the final 

integrated rotor is found in Figure 19. 

 

Table 13: Axial loads and fatigue limits 
Net Force on Pump Impeller, lbf  (N) 195.8 (871) 
Net Force on Turbine Rotor, lbf  (N) -237.9 (1058)
Turbine Bore Stress level, ksi (MPa) 40.15 (276.8) 
Pump Bore Stress level, ksi (MPa) 36.11 (249.0) 
Turbine High Cycle Fatigue Margin at Design Speed, ksi (MPa) 57.88 (399.0) 
Pump High Cycle Fatigue Margin at Design Speed, ksi (MPa) 69.82 (481.4) 
Low Cycle Fatigue Limit at Design Speed > 106 cycles 

 
 

 

Fnet = 237.9 lbf Fnet = 195.8 lbf 

 
Figure 19:  Bearing arrangement 
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Figure 20:  Final integrated rotor 
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5 Conclusions and Recommendations  

This research effort was undertaken to examine the design of an oxygen pump to 

support a dual-expander engine concept (the DEAN) intended to meet the Phase III goals 

of the IHPRPT program.  The main thrust of this program is to ensure reliable access to 

space and make space launch more efficient from both a monetary and time perspective.   

This effort used software that employs industry standard techniques and practices that 

satisfy governing equations and physics to model and predict pump and turbine 

performance. 38,44,59 

5.1 Conclusions 

A LOX pump powered by warm gaseous oxygen is a plausible candidate for use 

in a dual expander cycle upper stage engine that will meet the performance, reliability, 

maintainability, and service life goals of IHPRPT Phase III. 

Inconel 718 is the recommended material of construction for both the pump and 

the turbine due to its record of satisfactory service in oxygen and favorable mechanical 

properties, including its good ductility at cryogenic temperatures and high yield strength.  

Monel K-500, while exhibiting good oxygen resistance, does not possess the strength of 

Inconel 718.  The expected turbine inlet temperature (600 R) is 55 percent of the ignition 

temperature of Inconel 600 demonstrated in Schoenman’s friction rubbing test24. 

Additionally, Schoenman found that Monel, 400, 316 Stainless Steel, and Nickel 200 

became more difficult to ignite and burn at oxygen pressures above 1000 psi  

(6.89 MPa)23; if this trend holds for Inconel then the difference in oxygen resistance may 

be insignificant at the pressures expected in the turbine.  While Inconel 600 and Inconel 
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718 would be expected to behave similarly (based on their similar composition), a further 

test would be prudent. 

The factors most affecting the turbine’s power output are inlet temperature, inlet 

total pressure, and mass flow rate.  These quantities are highly dependant on engine 

characteristics outside the pump designer’s purview.  Therefore, this system will be 

heavily influenced by engine design choices affecting chamber cooling. 

The pump’s power requirements are most affected by blade angle, blade 

thickness, and rotational speed, with the last having the most impact and being directly 

dependant on the turbine. While the pump appears to have ample NPSH, the addition of a 

small boost pump such as that used by Buckmann, et al.10 or an axial inducer ahead of the 

impeller (such as those investigated by Kamijo et al.60, Shimagaki, et al.61, and Bramanti, 

Cervone, and d’Agostino62) is advisable. 

The pump is capable of throttling down to 52 per cent of its maximum flow at 

design speed.  While it may successfully operate at lower flow rates, it is likely the head 

rise at these lower flow rates will be insufficient to meet the engine’s demands.  

This study examined the design of an oxygen pump intended for use with a dual 

expander engine concept.  This pump must be capable of supporting Phase III IHPRPT 

goals of maintainability, reliability, and supportability in addition to providing the flow 

and head rise demanded by the DEAN engine concept.  The pump presented will provide 

ample flow at an appropriate pressure at the design point and will be capable of a wide 

throttling range.  The turbine presented supplies adequate power over a wide range of 

desired flow rates.  Its output is highly dependant on other engine characteristics, 

particularly the combustion chamber.  The hydrostatic liftoff bearing will maximize the 
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likelihood of achieving the reliability, maintainability, and service life goals of the 

IHPRPT program. 

 

5.2 Recommendations for Future Research 

First, as this study focused on the hydrodynamic design of the pump and turbine, 

a rotodynamic analysis of the turbopump is in order. 

Also, this study used a constant turbine nozzle loss coefficient based on a relation 

given by Dixon41 for well-designed nozzle rows in normal operation and software 

package guidance44; a nozzle designed for this application with calculated losses would 

give more reliable results.  

The turbine uses all full blades with no splitters.  While Rohlik63 suggests only a 

modest improvement is possible by replacing half the blades with splitters, it should be 

investigated. 

Furthermore, while the turbine is operating in a favorable specific speed for 

attainment of high efficiency, the same may not be true of the pump.  A trade study may 

find another rotational speed that achieves higher pump efficiency and perhaps a deeper 

throttling range while having a minimal effect on the turbine.11  

Finally, a water/air flow test on a model of the pump and turbine would help to 

define performance and validate the design methods and loss models used. Conversely, it 

may show the need to use alternative loss models.   
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Appendix A 
 
RITAL Inputs 

Inlet Conditions 

Total Temperature    600R 

Total Pressure     3663psi 

Mass Flow     95.0 lbm/s 

Rotational Speed    32000 rpm 

 

Nozzle Geometry 

Inlet tip radius     3.40836 in 

Inlet hub radius    3.40836 in 

Inlet blade height    0.243 in 

Exit tip radius     2.9 in 

Exit hub radius    3.40836 in 

Exit blade height    0.243044 in 

Number of blades    15 

Blade TE normal thickness   .035446 in 

Vane Cord Length    0.5 

Throat area multiplier    1.0 
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Nozzle Properties 

Inlet blockage     0.02 

Loss coefficient    0.0395 

Trailing edge loss multiplier   0.2 

Fraction of loss upstream of throat  0.3 

Throat aerodynamic blockage   0.05 

 

Nozzle Options 

Loss model     User Specified Loss Coefficient 

Deviation model    Modified Howell Correlation 

Constants     a3= 0.13 

 

Interspace 

Swirl coefficient    1.0 

Inlet blockage     0.01 

Loss coefficient    0.001 

Rotor Geometry 

Inlet:        Exit 

Tip radius  2.8 in     2.3 in 

Hub radius  2.8 in     0.75 in 

Blade height  0.35 in  

Blade angle  0.0 degrees    -60 degrees 

Blade TE normal thickness     0.03 in 
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Rotor throat area multiplier     1.0 

Number of blades      22 

Suction Surface blade thickness at throat   0.05 in 

Axial clearance      0.0035 in 

Radial clearance      0.007724 in 

Back face clearance      0.0035 in 

 

Rotor Properties 

Optimum incidence      -35.0 degrees 

Inlet blockage       0.1 

Rotor throat aerodynamic blockage    0.05 

Rotor exit deviation      3.0 degrees 

Trailing edge loss multiplier     1.0 

Fraction of loss upstream of throat    0.6 

Rotor loss model      NASA passage loss  

 

Rotor Loss Coefficient Multipliers 

Incidence       1.0 

Passage       0.1 

Axial clearance       0.4 

Radial clearance      0.75 
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Exit Conditions  

Blockage       0.0 

Exit total pressure      2035 

 

PUMPAL Inputs 

Upstream Conditions 

Stagnation temperature     150 R 

Stagnation pressure      45 psi 

Rotational Speed      32000 rpm 

Impeller Inlet-Geometry 

Dimensions       Variable 

Hub radius       0.760267 

Setback angle       36.9 degrees 

Number of main blades     7 

Leading edge thickness     .0625 

Incidence (Tip, hub, and RMS)    2 degrees 

Impeller Inlet-Properties 

Blockage       0.083337 

Velocity Ratio       1.05 

LC1        0.01 

Flow angle correction      0.0 
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Impeller Inlet-Options 

Inlet incidence (hub,mean, and tip)    Input 

Inducer optimization      For Min. NPSHR 

LC1        Constant 

Swirl Option       Set s. angle directly 

Impeller Exit-Geometry 

Rotor Design Option      Optimize R2 and B2 

PHI2        90.0 degrees 

BEATA2B, Mean      -59.98 

Number of exit blades      14 

Blade thickness      0.1 in 

Bexp ratio       1.0 

Impeller Exit-Properties 

Msec/M       0.550682 

DELTAs       0.0 

DELp option       Nominal 

LAM2        4.2 

DF multiplier       1.0 

Design Target       Pressure 

Pressure Rise Multiplier (safety factor)   1.02  

ETAa:        0.0 

ETAb        0.0 
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Impeller Exit-Options 

Impeller tip model     Two-zone: Frozen 

Slip model      Preferred deviation function  

Slip definition      American 

Disk friction      Rear disk friction only 

Recirculation power     Variable Power 

Impeller Diffusion     Specific Speed Function 

Two-zone calculation     Based on tip to tip 

Exit width design model    User Specified Lam2 

Volute-Geometry 

Dimensions      Variable 

Type       Symmetric (22.5 deg) 

Nominal Area at 0 degrees    Fixed 

Radius (VR7/R5)     1.0 

Station 8 exit diameter ratio    2.0 

Volute-Properties 

LC57Mult      1.0 

CP57       -1.370E-4 

CP78Mult      1.0 

Volute exit cone model    Blockage correction 

Impeller exit area multiplier    1.1 
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